«Софт решает важную проблему — считывает обрезанные QR-коды, которые размещаются на платежках, счетах, квитанциях. Даже небольшой сдвиг при печати кода приводит к его обрезке», — рассказал генеральный директор Smart Engines, доктор технических наук Владимир Арлазаров.
Созданный алгоритм отличается от классического подхода в этой сфере. Типовая система для успешного определения и дальнейшего считывания QR требует, чтобы в поле видимости находились четыре объекта: три шаблона поиска и один наведения. Первые — это сравнительно большие квадраты в трех углах кода, шаблон наведения — маленький квадрат, расположенный в правом нижнем углу. Однако на некоторых изображениях часть информации, содержащая шаблоны поиска, может отсутствовать в виду заслона (например, пальцем) или ошибки печати. В таком случае обычный сканер не сможет корректно распознать код, пояснили специалисты.
Разработчики предложили другую схему чтения QR на изображениях, полученных с камеры, — она ориентируется не только на шаблоны поиска, но и на структуру. Созданная ИИ-система с помощью нейросети восстанавливает утраченную информацию. Например, если отсутствует один или два из шаблонов поиска, то на основе внутренней структуры кода предсказываются их координаты даже в случае проективного искажения кода.
Комментарии